Two-step CNN framework for text line recognition in camera-captured images

Publisher: IEEE DOI: 10.1109/ACCESS.2020.2974051

In this paper, we introduce an “on the device” text line recognition framework that is designed for mobile or embedded systems. We consider per-character segmentation as a language-independent problem and individual character recognition as a language-dependent one. Thus, the proposed solution is based on two separate artificial neural networks (ANN) and dynamic programming instead of employing image processing methods for the segmentation step or end-to-end ANN. To satisfy the tight constraints on memory size imposed by embedded systems and to avoid overfitting, we employ ANNs with a small number of trainable parameters. The primary purpose of our framework is the recognition of low-quality images of identity documents with complex backgrounds and a variety of languages and fonts. We demonstrate that our solution shows high recognition accuracy on natural datasets even being trained on purely synthetic data. We use MIDV-500 and Census 1961 Project datasets for text line recognition. The proposed method considerably surpasses the algorithmic method implemented in Tesseract 3.05, the LSTM method (Tesseract 4.00), and unpublished method used in the ABBYY FineReader 15 system. Also, our framework is faster than other compared solutions. We show the language-independence of our segmenter with the experiment with Cyrillic, Armenian, and Chinese text lines.


Test Drive Our Smart Engines

Free demo apps allow you to experience the power of Smart Engines software for intelligent document scanning in a real-world context.

Why not experience the power of Smart Engines for yourself? Our demo apps allow you to test the capabilities of our identity document recognition software on mobile devices in videostream or in a single image (photo, scan).

Simply display any document to the camera in real-time or choose a photo from the gallery, and the app will recognize and capture the necessary data.

Demo apps Privacy Policy

id documents enginge by Smart Engines
Apple App Store Badge
Google Play Badge
id documents enginge by Smart Engines

Send Request

Send request for quotation or more information about products.

Contact Form

Smart Engines is to provide a reply within 2 business days. If you don't receive a message from our representative within 2 business days, please check your spam folder or simply send us an email to sales@smartengines.com

Smart Engines is committed to privacy, we are fully compliant with GDPR and CCPA, all the personal data is intended for internal use only.