Improving Neural Network Performance on SIMD Architectures

Proc. SPIE 9875, Eighth International Conference on Machine Vision (ICMV 2015), 98750L (8 December 2015); doi: 10.1117/12.2228594

Neural network calculations for the image recognition problems can be very time consuming. In this paper we propose three methods of increasing neural network performance on SIMD architectures. The usage of SIMD extensions is a way to speed up neural network processing available for a number of modern CPUs. In our experiments, we use ARM NEON as SIMD architecture example. The first method deals with half float data type for matrix computations. The second method describes fixed-point data type for the same purpose. The third method considers vectorized activation functions implementation. For each method we set up a series of experiments for convolutional and fully connected networks designed for image recognition task.

Test Drive Our Smart Engines

Free demo apps allow you to experience the power of Smart Engines software for intelligent document scanning in a real-world context.

Why not experience the power of Smart Engines for yourself? Our demo apps allow you to test the capabilities of our identity document recognition software on mobile devices in videostream or in a single image (photo, scan).

Simply display any document to the camera in real-time or choose a photo from the gallery, and the app will recognize and capture the necessary data.

Demo apps Privacy Policy

id documents enginge by Smart Engines
Apple App Store Badge
Google Play Badge
id documents enginge by Smart Engines

Send Request

Send request for quotation or more information about products.

Contact Form

Smart Engines is to provide a reply within 2 business days. If you don't receive a message from our representative within 2 business days, please check your spam folder or simply send us an email to sales@smartengines.com

Smart Engines is committed to privacy, we are fully compliant with GDPR and CCPA, all the personal data is intended for internal use only.