March 15, 2019

Effective real-time augmentation of training dataset for the neural networks learning

Proceedings Volume 11041, Eleventh International Conference on Machine Vision (ICMV 2018); 110411I (2019) https://doi.org/10.1117/12.2522969

In this paper we study the real-time augmentation – method of increasing variability of training dataset during the learning process. We consider the most common label-preserving deformations, which can be useful in many practical tasks. Due to limitations of existing augmentation tools like increase in learning time or dependence on a specific platform, we developed own real-time augmentation system. Experiments on MNIST and SVHN datasets demonstrated the effectiveness of suggested approach – the quality of the trained models improves, and learning time remains the same as if augmentation was not used.

Test Drive Our Smart Engines

Free demo apps allow you to experience the power of Smart Engines software for intelligent document scanning in a real-world context.

Why not experience the power of Smart Engines for yourself? Our demo apps allow you to test the capabilities of our identity document recognition software on mobile devices in videostream or in a single image (photo, scan).

Simply display any document to the camera in real-time or choose a photo from the gallery, and the app will recognize and capture the necessary data.

Demo apps Privacy Policy

id documents enginge by Smart Engines
Apple App Store Badge
Google Play Badge
id documents enginge by Smart Engines

Get in Touch

For questions about our products, research, people or project proposals, please get in touch.

Contact Form
Warning before submitting your request:

Smart Engines is fully committed to provide an answer within 2 working days. However, it is your responsibility that your IT infrastructure does not block our reply or redirect it into your spams. If you haven’t received any answer from us within 2 working days, please check your spams or simply call us.

Smart Engines guarantees that the provided information will not be made public and will be used only internally.