
Whitepaper

Binarization Algorithms  
for Documents Recognition



Binarization algorithms for Documents Recognition   
 
During the 9-year history of International Competition on Document Binarization DIBCO17 held 
within ICDAR conference, a lot of bold and unconventional algorithms of binarization have been 
proposed. Although our team at the Smart Engines does not normally use such algorithms in mobile 
recognition, we were convinced that our product had unique features worth presenting to the public, 
and we decided to participate for the first time.  

 
Figure 1: Document image binarization results assembled into gif animation   

In essence, contestants were presented with a plethora of original document images (see Figure 2) 
with corresponding to their ideal binary results (according to human-made annotation) (see Figure 
3). The task was to come up with an algorithm that would transform the initial images to two tier 
black-and-white images as precisely as possible. Several metrics were evaluated and considered to 
judge each team’s performance. It is worth mentioning, that teams had no access to the “ideal” 
images beforehand. Thus, they could only calibrate their algorithms using the previous years’ 
images. The test dataset consisted of complex images with fine watercolors, see-through symbols, 
etc. - so that the competition could distinguish truly efficient algorithms.   

 
 
 
 
 

Figure 2: Example of an original document image on a complex background 

Figure 3: Example of an expected ideal document image binary result 

Solution Framework 
 
First, all the data from the previous competitions has been collected: 65 written and 21 printed 
pictures in total. Obviously, in order to achieve the best results, not only did we inspect available 
images from the competition, but also looked for open data sets and thousands archived printed and 
handwritten images. Having inspected the images, it became clear to us what kind of challenges we 
could potentially face and which had been neglected by the competition organizers. For instance, 
documents from the past competitions had never contained grid elements, despite occurrence of 
tables in archives.    
During the preparation for the competition, we tried to follow several parallel ways. Not only did 
we use well-understood classical algorithmic approaches, but also employed machine-learning 
methods for “object-background” pixel classification, despite the lack of initially presented to us 
sets of data. Since this approach turned out to be the most efficient, let us explore it in more details.   
 
Neural Network Architecture 
 
Initially U-net has been chosen as the neural network architecture type, since such an architecture 
has proven itself during numerous competitions related to segmentation (dstl, Ultrasound Nerve 
Segmentation, Data Science Ball 2017). Furthermore, a large class of well-known binarization 
algorithms are particularly coherent in such an architecture or similar ones.   
An important advantage of this architecture is that, in pursuit of training the network, one can create 
sufficient training material out of small amount of available images. Besides, the network has a 

http://vc.ee.duth.gr/dibco2017
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https://www.kaggle.com/c/dstl-satellite-imagery-feature-detection
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relatively small number of weights. There are certain nuances, though. The artificial neural network 
that is used does not, strictly speaking, resolve the problem of binarization. Essentially, each pixel is 
matched to some number in the range between 0 and 1, which characterises to what extent the pixel 
belongs to one of the classes (meaningful filing or background) and which needs to be transformed 
into the final result. 
80% of source images were taken as a training sample, whereas the rest (20%) of them were 
devoted to validation and testing. Colored images were transformed to greyscale to avoid 
overfitting, then they were divided into non-overlapping pixel windows of size 128x128 (see Figure 
4). The dimensions of the windows had been chosen empirically, by testing windows sized from 
16x16 up to 512x512 pixels. We obtained 70000 windows out of 100 initial images, the former later 
were used as a neural network input. 
 

 
 

Figure 4: Example of a greyscale document image divided into pixel windows 

Each window was then matched to a binary mask. We followed the principle of carefully examining 
and understanding the underlying process, as opposed to merely launching hyperopt for a week. 
Adam was chosen for stochastic optimization and cross-entropy as a loss function metric.   
 
Initial experiments 
 
The first experiments showed vividly that this approach enables to achieve superior results 
compared with simple non-trainable methods (like Otsu or Niblack). The neural network was easily 
trainable, and the process shortly converged to the acceptable optimum.   
Each animation was obtained as follows: during the training process, as the quality improved, the 
network would receive the same image over and over and the obtained results were assembled into 
one gif animation (see Figure 6). 
 

 
 

Figure 5: The original handwritten document image on a complex background 

 
 

Figure 6: Obtained binarization results assembled into gif animation 

The difficulty of binarization employing this method is due to the fact that occasionally it is hard to 
distinguish between the background and the specificities of intricate handwriting: blots, certain 

https://github.com/hyperopt/hyperopt
https://arxiv.org/pdf/1412.6980v8.pdf
https://en.wikipedia.org/wiki/Otsu's_method
https://en.wikipedia.org/wiki/Thresholding_(image_processing)


parts of the letters are blurred and text from the other side of a paper appear. The one who wrote the 
manuscript on Figure 5 must have not been the neatest person of his time. 
 

  
 

Figure 7: Example of a document image with non-uniform background on a see-through paper 

In the example shown in Figures 7, apart from the non-uniform background, the text from the other 
side of the paper can be seen, and the possible way of classifying this text as a background is 
spotting mirrored characters. 
 
After each experiment, we would also assess the relevancy of each model to the numerous archives 
from the open database. What we found out, was that applying the network to inputs from the 
available database would occasionally bring about unsatisfying results. Hence, some of the 
documents we would add to the training sample. Edges of pages and their markups in particular 
presented difficulties for us. Five additional documents in total were selected, all of which 
contained objects of interest. 
In the example shown in Figures 8 and 9, besides the misinterpreted edges of the page, both the 
table and the text in the middle are deficiently defined. 

 
Figure 8: Example of a document image with a table 
Figure 9: Binary result of a document image with a table 



When looking at Figure 11 one can notice how the network highlights page edges, which is a sign 
of inaccuracy from the point of view of this competition. 

 
Figure 10: Example of a document image 

Figure 11: Document image binarization results where the page edges have been highlighted by the net.  

The applied augmentation techniques and how they help 

During the process of the network training and the analysis of mistakes for enhancing the quality, 
several methods of data augmentation have been used, including some distortion methods: 
reflection of images against the axes, brightness, inversion, noise (Gaussian, salt and pepper), as 
well as a number of elastic transformations (see example here), variations of image scaling. Each 
distortion type has been applied due to task specifics, mistakes spotted in the network performance 
and owing to common practices. 

 
Figure 12: An example of combination of several augmentation methods 

In Figure 12 one can see an example of a combination of several augmentation methods, applied on 
the fly during the training process. 
 

https://www.kaggle.com/bguberfain/elastic-transform-for-data-augmentation


The ensemble process 
The next stage of producing the final result is creating an ensemble of several solutions. We have 
thus used three U-net nets of different architectures, each trained on different data sets and one 
untrainable binarization method, the latter having been implemented on the edges of images in 
order to cut them off. 
 
Choosing the final solution 
As we progressed to the final version of the algorithm, each step has been subjected to cross-
validation in order to make sure we headed in the right direction. The final decision was based on 
this statistics. It was just one well trained U-net, with the implementation of the following steps: 
mirrored image, reversed image, image with reduced size, enlarged image. 
 
 Results 
There were 18 participants from all around the world, including USA, China, India, Middle East 
countries, and Australia. A lot of solutions were proposed, including the use of neural network 
models, modification of classic adaptive methods, game theory and combinations of different 
approaches. Surprisingly enough, although methods used by the participants differed significantly, 
the final results turned out to be very similar on many occasions. The results for respective methods 
are presented in the table below 
 
№ Brief Description of the Method Score FM Fps PSNR DRD 

1 Our Method (U-net) 309 91.01 92.86 18.28 3.40 

2 
FCN (VGG-like architecture) 

+ post filtering 
455 89.67 91.03 17.58 4.35 

3 

Ensemble of 3-х DSN  

with a three-level exit, 

calibrating fragments of different 

scale 

481 89.42 91.52 17.61 3.56 

4 

Ensemble of 5 FCN — input: 

fragments of different scale 

+ Howe binary method 

+ RD attributes. 

529 86.05 90.25 17.53 4.52 

5 
Similar to the previous method  

+ CRF post-processing 
566 83.76 90.35 17.07 4.33 

... ... ... ... ... ... ... 

 Otsu  77.73 77.89 13.85 15.5 

 Sauvola  77.11 84.1 14.25 8.85 

 



Table 1: DIBCO17 Results Table 

Smart Engines team won the competition the first time we participated, and our solutions attained  
the highest mark on both hand written documents as well as printed ones. Here are a few examples 
demonstrating the work of our algorithms on a range of text images.  
 


